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Abstract— Belief Space Planning has been of interest in the
robotics community because of its ability to take into account
robot state uncertainty during planning. [1] presented a method
for planning in the belief space given a known map by assuming
maximum likelihood observations. [2] extended this work to
support Active SLAM tasks by introducing the concept of the
generalize belief space (GBS), which contains a joint belief state
consisting of the robot state and the world state. By planning in
the GBS, no prior knowledge of the map is required to perform
planning. This is useful for autonomous exploration tasks such
as confined space inspection, etc. where the robot has to plan
uncertainty-reducing actions to improve localization accuracy
while fulfilling planning objectives. In this project we implement
[2] from scratch and evaluate its performance against a naive
LQR controller on several different simulated maps.

I. INTRODUCTION

Planning under uncertainty is a Partially Observable
Markov Decision Process (POMDP) as formulated in [3].
The uncertainty aspect of this planning problem sets it apart
from regular Markov Decision Processes (MDP) because the
robot cannot fully observe its own state and the world state.
[1], [4] proposed one way of solving optimal controls under
uncertainty by maintaining a probabilistic belief distribution
of the states, and planning actions in the belief space instead
of the state space. This enables us to incorporate state esti-
mation uncertainty (covariance of state belief distribution) as
part of the planning objective and plan uncertainty-reducing
actions to help cope with sparse features in the environment.
Instead of planning straight for the goal pose, the planner
actively reduces the estimation error. The planner might do
this by steering the robot towards previously observed visual
landmarks when state uncertainty becomes too big (shown
in Fig. 1). Reduced estimation error means better trajectory
tracking, and hence better mapping quality. The belief dis-
tribution formulated in [1] only contains the robot pose and
it assumes a known environment for predicting maximum
likelihood observations. This is unrealistic in confined space
inspection tasks where the environment is usually unknown.
[2] proposed to remove this assumption by maintaining a
joint state of both the robot state and the world state. The
world state is to be estimated together with the robot state
(pose), so there is no need to have any prior knowledge of
the environment.

In this work we follow the Generalized Belief Space
(GBS) planning framework proposed by [2] and implement a
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Fig. 1: Instead of directly reaching the goal, our planner plans
uncertainty-reducing action that will lead to re-observation
of landmarks and reduce state estimation uncertainty (shown
as black ellipses, larger area means larger uncertainty).

planner from scratch because there are no publicly available
implementation of this paper available at the time of this
writing. Fig. 1 shows the big picture result of our imple-
mentation: our simulated robot moves out of the way to re-
observe previous landmarks after a build up of uncertainty.
We evaluate our planner by comparing its performance
against that of a simple LQR planner which only penalizes
distance to goal and control effort, using several metrics
including: 1) evolution of uncertainty, 2) trajectory estimate
error, 3) total control effort expanded, and 4) total planning
time.

II. METHODOLOGY

This POMDP autonomous navigation problem can be
broken down into two parts - perception and planning.
System state belief is updated through observations and
system dynamics in the perception component. We use the
Square Root SAM to update the system belief state as
proposed by [5] because this smoothing based approach can
optimize the entire state trajectory efficiently by exploiting
sparsity in the information matrix. To implement the planning
framework proposed in [2], we first need to formulate the
joint belief distribution and its propagation given some
measurements and actions. Then, the optimal control action
is obtained using Model Predictive Control (MPC). To solve
for the optimal control that produces the best objective
value, we implemented the dual-layer iterative optimization
following [2]. We design the cost function to include a
set of concurrent planning objectives including 1) goal-
reaching, 2) uncertainty-minimizing, and 3) control-effort-
minimizing. Finally, we discuss the choice of weight matrices



that regulates the balance between conflicting objectives.

A. Square Root SAM

Square Root SAM solves the full Simultaneous Local-
ization And Mapping (SLAM) problem in a smoothing
fashion. Compared to the filtering approach used in EKF
SLAM methods, Square Root SAM optimizes the entire
state trajectory instead of just the latest state. This is useful
because it avoids the linearization error that builds up due to
a non-linear measurement model. We use the factor graph
based GTSAM library implemented by [6] and use the
Gaussian state estimate (mean and covariance) as our belief
model. The belief is updated by adding measurements and
actions as constraints in the factor graph and optimizing the
graph.

B. Generalized Belief Space

The generalized belief space is the span of joint states
which include both the robot state and the world state. The
robot state contains pose estimate of the robot, and the world
state contains the pose estimates of the landmarks. The joint
state is defined as: Xk

.
= {x0, x1, . . . , xk,Wk} at the k’th

planning step. The planning objective function defined at
time step k + l is a function of the generalized belief at
step k + l, where the belief is modelled as:

gb(Xk+l)
.
= p(Xk+l|Zk, Uk−1, Zk+1:k+l, uk:k+l−1) (1)

Here Xk+l is the joint state including robot poses and
landmark locations at time k+ l. Zk is all prior observations
until time k. Uk−1 is the history of actions. Zk+1:k+l and
uk:j+l−1 are the future observations and actions respectively.
The belief is then modelled using a Gaussian:

gb(Xk+1) ∼ N(X∗k+l, Ik+l) (2)

Where X∗k+l is the maximum a posteriori (MAP) estimate:

X∗k+l = arg max
Xk+l

gb(Xk+l)

= arg min
Xk+l

− log(gb(Xk+l))
(3)

And Ik+l is the information matrix which is the inverse
of the covariance at step k + l.

We limit the scope of this work to a 2D environment
with sparse landmarks, with the robot state being [x, y] and
the control being [dx/dt, dy/dt]. The solution to the MAP
estimate is discussed in section II-D.

C. Model Predictive Control

In this section we consider the optimal control problem
at each planning time k. Model Predictive Control (MPC) is
used here to make planning in the large, continuous belief
space computationally viable. The optimal control sequence
uk:k+L−1 is picked over L planning horizons to minimize
the objective function Jk(uk:k+L−1). Here to formulate
the optimization problem we consider generic run-time and
terminal cost functions cl and cL. For notation convenience,

Fig. 2: Dual layer iterative optimization to solve the optimal
control problem in generalized belief space. Source: Taken
from [2].

cl is the run-time cost at step k + l, defined in this general
form:

cl(gb(Xk+l), uk+l) (4)

In [2], the authors do not assume maximum likelihood
observations, and maintain future observations as random
variables. This fact means that in the objective function we
will not have future observations available. Instead, expecta-
tion is taken over the cost over the random variable Zk+1:k+l

to account for the uncertainty in future observations. The
objective function at step k is then defined as:

Jk(uk:k+L−1)
.
=

L−1∑
l=0

E
Zk+1:k+l

[cl(gb(Xk+l), uk+l)]

+ E
Zk+1:k+L

[cL(gb(Xk+l))]

(5)

The corresponding optimal control policy is:

u∗k:k+L−1 = arg min
uk:k+L−1

Jk(uk:k+L−1) (6)

Now we discuss the details of this optimization problem in
the following section.

D. Iterative Optimization

As shown in Fig. 2, there are two layers of inference
in the optimization framework proposed by [2]. The outer
layer is a non-linear optimization of the objective function
defined in (5) over control. The inner layer is propagating
the generalized belief distribution over the planning horizon
given current control values in each outer layer iteration. The
reason belief propagation is also an optimization problem is
because the belief distribution at each future planning step
is estimated using MAP as formulated in (3).

We implemented our outer layer non-linear optimization
using stochastic gradient descent to generate the optimal
control sequence. For the inner layer, we took the observation
made in [2] that one iteration of Gauss-Newton sufficiently
captures the effect of future observation and action over the
belief state, and implemented accordingly.

In the inner layer, we perform one iteration of Gauss-
Newton optimization around the linearization points X̄k+l

obtained by predicting future states using the motion model



with current control values uk:k+l−1 for each look-ahead
time step:

X̄k+l =


x̄k
x̄k+1

...
x̄k+l

 .
=


X̂k

f(x̄k, uk)
...

f(x̄k+l−1, uk+l−1)

 (7)

Through the mathematical derivations provided in [7], we
can solve the MAP estimate problem in (3) using linear least
squares:

X∗k+l = arg min
Xk+l

‖Xk −X∗k‖2Ik

+

l∑
i=1

{‖xk+i − f(xx+i−1, uk+i−1)‖2Ωw

+‖zk+i − h(XO
k+i)‖2Ωv

}

(8)

Where ‖x − u‖2Ω = (x − u)>Ω(x − u) is the Mahalanobis
norm with information matrix Ω as the scaling factor. In
the one Gauss-Newton iteration we make, the update vector
∆Xk and propagated information matrix Ik+l can be calcu-
lated by first re-writing function being minimized in (8) in
the following form:

‖Ak+l(uk:k+l−1)∆Xk+l − bk+l(uk:k+l−1, zk+1:k+l)‖2 (9)

Where A and b are of the following form:

Ak+l
.
=


[
I

1/2
k , 0

]
Fk+l

Hk+l

 , b =

 0

Ω
1/2
w bfk+l

Ω
1/2
w bhk+l

 (10)

The information matrix at step k + l can then be obtained
using:

Ik+l
.
= A>k+lAk+l (11)

Here we care the most about the information matrix at
planning step k+l because it represents the evolution of state
estimate uncertainty and is a great term to be incorporated
in the final objective function. We omit the discussion of
other details in the inner layer Gauss-Newton update as the
derivation is long. More details can be found in [7]. In our
implementation we construct the A as defined in (10) by
stacking measurement Jacobians H and motion Jacobians
F in appropriate locations. We follow the stacking order
described in [5] and [8] to make the correct associations
between state variables for the least square state estimate
solution.

E. Objective Function Design

In this work we experimented with three planning objec-
tives: 1) goal-reaching, 2) uncertainty-minimizing, and 3)
control-effort-minimizing. The run-time and terminal cost
function we use is defined as follows:

cl(gb(Xk+l), uk+l) = ‖EX∗k+l −XG‖Mx

+tr(MΣI
−1
k+lM

>
Σ )

+‖ζ(uk+l)‖Mu

(12)

cL(gb(Xk+L)) = ‖EX∗k+L −XG‖Mx

+tr(MΣI
−1
k+LM

>
Σ )

(13)

Where ζ(u) is the function defining control effort given
control values. In our case ζ(u) = ‖u‖. Substituting (12)
and (13) to the objective function (5), we get the final cost
function after taking the expectation over future observation
random variables:

Jk(uk:k+L−1) =

L−1∑
l=0

‖ζ(uk+l)‖Mu

+

L∑
l=0

tr(MΣI
−1
k+LM

>
Σ )

+

L∑
l=0

{‖EX∗k+L −XG‖Mx

+tr(Qk+l(Hk+lĪ
−1
k+lH

>
k+l + Ω−1

v ))}

(14)

Where Qk+l = (EI−1
k+lH>k+lΩv)>Mx(EI−1

k+lH>k+lΩv).
Here E is the selection matrix that chooses which part of the
joint state should be considered in goal-reaching behavior.
In our case this E matrix selects the robot pose part of the
joint state only. Here we can see a fourth term appearing
which is the direct result of not assuming maximum likeli-
hood assumption. The goal achievement behavior now also
incorporates uncertainty (Ī in the term) due to stochasticity
in future measurements.

The final objective function evaluated in (14) given our
run-time and terminal cost is used to compute the cost in the
inner layer with propagated generalized belief. The objective
value at each planning step in the MPC planning horizon is
added to form the final cost which is fed to the outer layer to
perform inference over control. The inner rectangle in Fig. 2
shows that the objectives at each planning step are summed
together and passed to the outer layer.

III. IMPLEMENTATION

We implemented all of our code in Matlab, and we make
it publically available here 1. Fig. 3 provides a block diagram
of how the major parts of our code work together. We split
the implementation of this paper into two major subsystems:
planning and estimation.

We use GTSAM to do fast incremental estimation based
on all of our prior measurements and controls. Then we
extract a gaussian belief state by marginalizing out previous
states and creating an estimate for the mean and covariance
of the current state of the robot and the world. The planning
module then takes this belief state and uses a dual layer
optimization to output the optimal controls for our given
cost functions. The outer layer of this optimization is done by
using Matlab’s in-built fmincon function. In the outer layer,
we use the optimal control values from the previous iteration
to seed the optimizer’s initial guess. Seeding our optimizer

1https://github.com/kumarhans/GBS

https://github.com/kumarhans/GBS


Fig. 3: High level implementation overview. We implement
the localization component using graph-based SLAM method
based on GTSAM infrastructure. The planning component
follows methods described in [2].

with a good initial guess, made the final trajectory smoother
and saved a lot of computation time. After optimizing our
controls, we execute only the first step of our optimal
control trajectory in an MPC style. We repeat this process
of estimation and planning until our robot reaches its final
destination.

A. Choice of Weight Matrices

There are three tunable weight matrices in the final
objective function (14): Mu, Mx and MΣ. The choice of
Mu is straightforward as it penalizes control effort propor-
tionally. However, Mx and MΣ affect two conflicting con-
trol objectives. Mx affects the importance of goal-reaching
behavior and MΣ affects the importance of uncertainty-
reducing behavior. [7] discussed the choice of these matrices
in detail and provided some guidance on how to balance
conflicting control objectives. In our work we hand-tuned
the weights until we got a satisfactory balance without too
much oscillatory behavior. We acknowledge the inadequacy
in our approach and evaluation of parameter tuning, and we
leave it as future work.

B. Weighting Future Landmark Observations

When constructing the H matrix in Eq. 10 we must simu-
late future observations based on our predicted future state.
To decide which landmarks are re-observed in the future
plan, one could use a hard sensing range cut-off. The problem
with such an observation model is that during the outer
layer optimization, unless the perturbed controls resulted
in the robot entering the sensing range, there wouldn’t be
any gradient available. To combat this issue we decided
to consider landmarks that were far away in planning, but
weight them according to their distance from the robot.

Hweighted = H

d1

. . .
dr

 (15)

This would mean that we would be more certain about
measurements from landmarks that are close to us. Adding
this additional bit of weighting eliminated the problem of

having no gradient to follow and allowed our optimization
to converge at more reasonable control values.

IV. RESULTS

A. Experimental Setup

We created several maps with different configurations of
waypoints and visual landmarks. In each of these maps, the
goal of the robot is to follow the waypoints sequentially
and plan actions that would satisfy the three planning ob-
jectives listed in II-E. We model the robot as a moving
point mass with the pose being its state [x, y]. The control
is [dx/dt, dy/dt] and control effort is calculated as total
trajectory length. The robot is able to sense the distance and
bearing of landmarks within a set sensing range. We run the
integrated perception and planning components together to
concurrently perform online state estimation and planning
in the belief space. We swap the planning module of our
pipeline with a simple LQR controller to evaluate the per-
formance of our planner on several evaluation metrics listed
in IV-B.

B. Evaluation Metrics

We evaluate the performance of the planner using four
metrics: 1) state and trajectory estimation uncertainty, 2)
final pose error, 3) total control effort expanded, and 4)
total planning time. The state estimation uncertainty is
computed by evaluating the trace of the state covariance
without considering the cross-correlation terms, it reflects
the total uncertainty in the estimated state trajectory. We
evaluate the quality of estimated state trajectory using the
Sums of Squares Error (SSE) metric. The total control
effort expanded is the length of trajectory executed and it
reflects the controller’s ability to efficiently move to the goal
location. The total planning time is the total time taken for
the planner to finish computing the optimal control, and it
represents the computation cost.

C. Experiment Result

We evaluate the performance of our planner on three maps:
Closure, Oasis and Uniform.

1) Closure: Fig. 4 show the trajectory visualization and
evolution of uncertainty for the LQR planner and our GBS
planner respectively in the map called Closure. The black
ellipses in the figures represent the uncertainty in the robot
state estimate, where a bigger ellipse means higher uncer-
tainty. The naive LQR planner does not take uncertainty into
account while planning so, over the entire trajectory, state
estimate uncertainty keeps growing. On the other hand, our
GBS planner can steer towards prior observed landmarks to
actively reduce uncertainty. The bottom right of Fig. 4 shows
the sharp decrease in state estimate uncertainty after re-
observation of landmarks due to the control actions produced
by the GBS planner. This map demonstrated that our GBS
controller is able to reach the final landmark with a much
higher precision than LQR controller, as shown in table I.
The total control effort of the GBS planner is greater than
that of the LQR planner because of the extra path travelled



to re-observe landmarks, which is expected and acceptable.
However, the total planning time of the GBS planner is
one order of magnitude higher than LQR because of the
computation overhead from iterative optimization.
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Fig. 4: Performance evaluation on map Closure

Planner LQR GBS
Total Control Effort (m) 24.41 26.59
Total Planning Time (s) 2.97 27.67

Final Distance to Goal (m) 1.09 0.41
Trajectory SSE (m2) 46.33 21.24

TABLE I: Comparison of total control effort and planning
time

We follow up our experiments on two additional maps to
test the generalizability of this method. Oasis has landmarks
located in the middle of the map while all the goal locations
are on the outside of the map. This scenario should force
the GBS planner to move towards the middle of the map
when the uncertainty is too high. Uniform has uniformly
distributed landmarks. We picked this map to see how the
GBS planner would perform on a map that wasn’t specially
crafted to induce uncertainty reducing behavior.

2) Oasis: Fig. 5 shows that the GBS planner goes out
of the way to move toward the center of the map on two
occasions in order to reduce the uncertainty of the robot.
The group of landmarks in the center of the map serves
as a uncertainty reducing location for the robot to travel
to whenever the uncertainty grows to high. Compared to
LQR method, the GBS method was able to reach the final
goal position with much less overall uncertainty and position
error. Table II shows that this increase in goal reaching
accuracy comes at the cost of slightly higher control effort
and much higher planning time.

3) Uniform: On the Uniform map, Fig. 6 shows the GBS
planner does nothing out of the ordinary compared to the
LQR method. This is expected because the robot is almost
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Fig. 5: Performance evaluation on map Oasis

Planner LQR GBS
Total Control Effort (m) 24.46 25.81
Total Planning Time (s) 2.98 35.91

Final Distance to Goal (m) 1.11 0.32
Trajectory SSE (m2) 33.50 24.08

TABLE II: Comparison of total control effort and planning
time on Oasis

always able to observe landmarks to suppress uncertainty, so
the shortest path objective dominates the cost function. Even
so, the GBS planner has better performance than the LQR
planner in terms of uncertainty and final position error shown
in Table III. We believe that this increase in performance is
because the GBS planner is taking less control actions. By
taking less control actions, the overall uncertainty of the state
also grows less.
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Fig. 6: Performance evaluation on map Uniform



Planner LQR GBS
Total Control Effort (m) 21.68 21.36
Total Planning Time (s) 3.29 40.43

Final Distance to Goal (m) 1.09 0.58
Trajectory SSE (m2) 43.92 19.00

TABLE III: Comparison of total control effort and planning
time on Uniform

V. CONCLUSION

In conclusion, we see that planning in the Generalized
Belief Space has distinct advantages and disadvantages.
While planning in the GBS is effective at lowering state
estimation uncertainty, it results in higher computational cost
and sometimes more control effort when compared to a naive
LQR planning technique. Our experiments demonstrate the
effectiveness of our implementation on three different maps.
The first two maps, Closure and Oasis, show that planning
in GBS outperforms LQR significantly in environments with
unevenly distributed landmarks. The third map, Uniform,
shows that in cases where there are always observable
landmarks, the performances of the GBS and LQR planners
are more similar because uncertainty does not grow as much.

For future work, we plan to generalize this planner to three
dimensions with more realistic robot and observation models.
We would also like to explore more options for parameter
tuning because currently we spend a considerable amount of
time hand-tuning parameters to balance conflicting objectives
(goal-reaching and uncertainty-reducing). Additionally, we
see a lot of parallels between our planning and estimation
modules. They both perform MAP inference using non-linear
optimization. We want to explore methods for combining
these two modules into one single efficient graph based
optimization routine using GTSAM. Last but not least, we
would like to design more planning objectives to enforce
constraints such as distance to landmarks, robot orientation,
etc.
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